
Ambient Interaction Framework – Software Infrastructure for the 
Rapid Development of Pervasive Computing Environments 

Peter Sutton, Margot Brereton, Clint Heyer and Ian MacColl 
School of Information Technology and Electrical Engineering 

The University of Queensland 
Brisbane  QLD  4072  Australia 

{p.sutton,margot,ianm}@itee.uq.edu.au, clint@thestaticvoid.net 

 

Abstract 
The Ambience project aims to develop and implement ambient 
computing – pervasive devices that blend naturally into the 
normal interactions and physical space of human work practice. 
Towards this end, the Ambient Interaction Framework (AIF) 
has been developed. The AIF is a software toolkit to facilitate 
the rapid development of pervasive computing environments 
through the integration of physical devices. The AIF supports 
various input and output devices, allowing them to work 
together in a cohesive manner. The extensible framework is 
supported by a Java API and relies on the decoupled nature of 
the communication provided by the Elvin content-based 
messaging service. The AIF eases the task of constructing new 
pervasive computing environments by encapsulating the data 
input and output capabilities of physical devices and automating 
the production and receipt of Elvin notifications. The 
encapsulated devices can then be integrated into new 
environments by writing a minimal amount of application-
specific Java code. The paper also describes a proof-of-concept 
implementation - an Ambient Café. 

1 Introduction 
Humans discover and understand their world through 
visual, gestural, tactile and conversational interactions. In 
contrast, the conduit between the physical and virtual 
worlds is typically a Graphical User Interface (GUI) 
using keyboard, mouse and windows-based displays. 
Recent palm-based devices replace the keyboard and 
mouse with a stylus but maintain the interactional 
paradigm. The user of such an interface must typically 
stand or sit still, use fine motor skills and focus on a 
narrow range of pixels in order to drive the interface, 
shutting out the context in which she is working, which 
usually means suspending conversation, group 
interaction, natural movement, attention to the state of the 
surrounding world, and productive thought. Such 
interfaces do not take advantage of most of the 
sophisticated motor skills people have developed over 
thousands of years to understand and manipulate physical 
devices in physical space.  

Miniaturisation, fast processors and wireless technology 
allow us to postulate seamless ways of blending the 
information infrastructure with social interaction in 
physical space to create information environments. This 
insight underpinned Weiser’s (1993) vision of Ubiquitous 
Computing in which computing devices would be widely 
distributed but invisible, operating in the background to 
support natural human interaction, rather than dominating 
and demanding human attention. In other words, one 
would talk, gesture and interact naturally, and the 
information environment would respond appropriately, 

rather than the present situation in which one has to 
attend to the information environment explicitly to have it 
respond. For example, in Weiser’s vision, when you walk 
into a room an ad-hoc network could be formed 
connecting devices on your person to a variety of sensors, 
actuators, input and output devices so that you can 
accomplish the task at hand with local relevant resources. 
Through multi-modal interface systems you will be able 
to interact with the information environment in natural 
ways using common skills of speech, gesture, glance, 
movement and manipulation. 

This grand vision of ambient computing has largely 
remained unrealized beyond the research laboratory. It is 
our belief that the underlying difficulty, in designing new 
interaction paradigms, is not due to technical challenges 
alone. Ambient computing involves a “very difficult 
integration of human factors, computer science, 
engineering, and social sciences” (Weiser, 1993). 
Ambient computing embraces “wicked” problems (Rittel 
and Webber, 1973) which are only understood by 
attempting to design solutions. These solutions and their 
effectiveness in turn help us to understand the nature of 
the problem.  

Because of the wicked nature of the problem, work is 
proceeding by populating the design space with 
examples. Several researchers have embraced the design 
of innovative interfaces and ambient computing (Allport, 
Rennison and Strausfeld 1995, Ishii et al 1998, Streitz 
1999, Weiser 1993, Wexelblat 1995).  

The Ambience project1 approaches the problem by 
drawing upon methodologies used to understand human 
activity that have been developed in the social sciences, 
anthropology and various fields of design. We take an 
iterative approach of observation, analysis, envisioning, 
design, deployment and evaluation. Through this 
approach, researchers from different disciplines develop a 
dialogue and move closer to understanding a complex 
problem space. This paper concentrates on the design and 
deployment aspects of ambient environments - other 
aspects of the Ambience project and associated 
methodologies are beyond the scope of this paper. 

The Ambient Interaction Framework (AIF) has been 
developed to simplify the design and deployment of 
prototype ambient computing environments by providing 
a common infrastructure on which these environments 

                                                            
1 The Ambience Project is supported by the Cooperative Research 
Centre for Enterprise Distributed Systems Technology (DSTC). 



can be constructed. The AIF supports various input and 
output devices, allowing them to work together in a 
cohesive manner. The extensible framework is supported 
by a Java API and is based on the Elvin content-based 
messaging service.  

The remainder of this paper is organised as follows. 
Section 2 provides more information about the Ambience 
project. Section 3 describes some related work in the 
development of infrastructure for ambient or pervasive 
computing. Section 4 describes the Elvin content-based 
messaging service on which the AIF is based. The AIF is 
described in detail in Section 5, followed in Section 6 by 
a description of a proof-of-concept implementation. Some 
conclusions are drawn in Section 7. 

2 The Ambience Project 
As noted above, the Ambience Project takes an iterative 
approach to the problem of creating ambient interaction 
environments. This iterative approach is depicted in 
Figure 1. 

Figure 1: Ambience Project Methodology 

By observing people doing tasks in their normal 
environment, it is possible to describe the actions they 
perform, the kinds of information they utilise and the 
potential for technology to assist with the task. By 
inserting technology into the activity and observing, it is 
possible to understand how the technology is used and 
how it changes the activity. 

The Ambience project aims to: 
1. create a community of people working on the design 

of interaction technologies that transgresses the 
borders between 'digital', 'physical' and 'social'. This 
community draws upon specialists from software, 
anthropology, cognitive science, social science, 
interaction design, industrial design, mechanical 
design, electronic design and architecture; 

2. develop a theoretical framework that characterises 
possible human interactions in physical space, virtual 
space and information space; and 

3. create an Ambient Environment testbed to explore 
integration of the physical environment with the 
information infrastructure in order to provide 
integrated ambient information support.  

The Ambience Environment testbed is described further 
below. 

2.1 The Ambience Testbed 
The Ambience testbed is intended to allow us to easily 
couple sensors, actuators, displays and other devices in 
human-physical space with a wired and wireless 
networked hardware and software infrastructure.  

In general, independent ambient devices and interaction 
technologies are ineffective. Value is derived by 
networking these devices, enabling information to be 
shared among the devices and the existing computing 
infrastructure such as servers and desktop PCs.  

The testbed is intended to experiment with:  
• integration of the traditional computer desktop with 

emerging human-computer interaction technologies 
e.g. speech recognition, eye movement, and gesture 
analysis, location tracking, 3D and virtual reality, 
personal digital assistants and visualisation; 

• low-cost provision of presence and awareness 
information through audio, video, event and 
communications services (to support user presence 
and awareness in distributed workgroups through a 
variety of telecommunications and computing 
services); 

• readily available high-cost, high-quality audio and 
video environments for short-term, high-intensity 
direct collaboration, with provision of quality-of-
service over heterogeneous networks; 

• integration of devices ranging from personal, low-
bandwidth devices such as Personal Digital 
Assistants, mobile phones and highly portable low-
profile or specialised computing and communications 
devices through to group-oriented, high-bandwidth 
devices such as smart whiteboards, sensor-equipped 
rooms and furniture, and Virtual Reality immersive 
environments; 

• integration of domain specific devices designed 
during the project to support domain specific needs; 
and 

• software technologies that support device-appropriate 
interaction abstractions while also providing 
interactive access to networked systems independent 
of the interaction modality.  

As a step towards the development of this testbed, we 
have developed the Ambient Interaction Framework by 
building on the Elvin content-based messaging service. 
Before describing the AIF and Elvin in detail, we look at 
other work in developing ubiquitous computing 
infrastructure. 

3 Infrastructure for Pervasive Computing 
Much of the development work in the field of ubiquitous 
computing has been of specific devices and applications. 
There has been limited work on general purpose 
architectures, infrastructure and frameworks. Most of this 
limited work has been at the network level, e.g., the 
development of communication protocols and 
technologies such as Jini (Sun Microsystems 2001). In 

Observe and analyse 
Field observation 
Video Interaction Analysis 

Understand 
Develop Frameworks 
of Understanding 

Design 
Create Testbed 
Experiment with Existing Technologies 
Design New Ambient Technology 



the area of ubiquitous awareness, Kantor and Redmiles 
(2001) have recently recognised the need for a software 
engineering framework for providing user awareness. 
Their solution, named CASS (Cross Application 
Subscription Service), enables users to better control the 
number, type and manner of awareness notifications 
received from disparate information sources.  

Our work, is aimed at providing a lower-level ubiquitous 
computing infrastructure. Consequent with our belief that 
interaction must move away from the keyboard and 
screen to be truly ubiquitous, our Ambient Interaction 
Framework provides interoperable device-level 
infrastructure. This enables prototype ubiquitous 
computing environments to be rapidly constructed from 
collections of physical devices which have been 
encapsulated into the AIF. The most closely related work 
are the “Phidgets” developed by Greenberg and Fitchett 
(2001) – though the emphasis in that work is on the 
hardware components themselves. The emphasis here is 
on the interface software – both the interface to the 
hardware and the interface to other components within 
the pervasive computing environment. 

An important feature of the AIF is its reliance on 
decoupled communication when communicating with 
other components of the system, that is, the sender of 
information is unaware of how many and who the 
recipients are, and the recipients are unaware of the 
identity of the senders. Decoupled communication is 
described further in section 3.1 below and the Elvin 
content-based messaging system on which the AIF is 
based is described in section 4. 

3.1 Decoupled Communication 
Decoupled communication can take many forms and 
names, including publish-subscribe, store-and-forward, 
event notification, message queuing, subject-based 
routing and content-based messaging. Sometimes these 
terms are used interchangeably and there is indeed 
overlap between many of the concepts. In this work we 
will classify decoupled communication as one of two 
types: message queuing or subject/content based 
messaging.  

Message Queuing. Message queuing is essentially a form 
of directed communication that doesn’t require a 
connection. Messages are usually directed to a particular 
destination and are queued on both the disconnected 
device and a server, so that when the device is 
reconnected to the network, messages are transferred in 
both directions. 

Subject/Content Based Messaging. Subject or content 
based messaging2 decouples the producers from the 
consumers. Producers publish messages but are unaware 
of the destination. Consumers subscribe to particular 

                                                            
2 This is sometimes called subject or content-based routing. This work 
will consider content-based routing to be at a lower level than content-
based messaging, e.g. routing algorithms or network techniques (e.g. 
mapping to multicast groups) to support such messaging. Content-based 
messaging would normally be based on content-based routing, but need 
not be. 

groups of messages and one-to-many messaging is 
possible (i.e. a message produced by a source may be 
passed to many destinations). 

There are significant differences between subject and 
content based messaging. Subject-based addressing 
allows consumers to subscribe only on the basis of 
message header information (or meta-data), usually the 
subject or channel or some combination of meta-data 
items3. This form of communication lends itself to 
multicast propagation with multicast groups 
corresponding to particular channels. A limited amount of 
coupling remains between producers and consumers - 
they are coupled on the basis of the channel name (Segall 
2000). 

Content-based addressing, on the other hand, allows the 
consumer to subscribe based on any aspect of the content 
of a message - not just the subject or other header. This 
provides greater flexibility to users and application 
developers as there is less coupling between producers 
and consumers, for example, consumers aren’t forced to 
take a complete channel feed, they can selectively filter 
appropriate messages at the router (or server). 

Content-based schemes have neither restrictions on the 
visibility of messages nor restrictions on what elements of 
a message can be used for selection. The major 
distinction of content-based routers is that message 
routing is determined by the consumers of the 
information rather than the producers (Segall 2000). 

There are many systems available which provide 
decoupled communication. A representative selection of 
these is examined in this section and Elvin is described in 
Section 4.  

TIB/Rendezvous. TIBCO’s TIB/Rendezvous product 
(http://www.rv.tibco.com) is an established messaging 
middleware with many customer installations worldwide. 
TIB/Rendezvous decouples producers and consumers by 
using publish/subscribe; however, it uses subject-based 
addressing and does not provide full addressability of 
content. 

Siena. Siena (Scalable Internet Event Notification 
Architecture) (Carzaniga, Rosenblum and Wolf 2001) is 
an example of wide-area event notification content-based 
routing. Siena allows subscriptions to address all fields of 
notifications. The emphasis in this work is on scalability - 
supporting content-based messaging over a wide area 
network. 

OpenQueue. OpenQueue (http://openqueue.sourceforge 
.net)  is an open source protocol for publish/subscribe 
message queuing. While connected to a server, a 
subscribing client receives published messages in real 
time. When a client reconnects after an absence, the 
server sends all messages queued for that clients while it 
was off-line. Messages are published in “topics” and for 
each subscriber to a topic the server maintains a queue of 
messages in that topic. OpenQueue can therefore be 

                                                            
3 The subject or channel is also sometimes known as the topic or group. 



considered a cross between subject-based addressing and 
message queuing. 

Gryphon. Gryphon (Aguilera et al. 1999) is a distributed 
message brokering system - it maps a subscription 
database to a network of underlying brokers that 
distribute the messages. Gryphon supports content-based 
subscription and indeed, supplies content-based routing. 
Like Siena, the emphasis in this project is on scalability 

3.2 Advantages of Content-Based Messaging 
Content-based messaging has many advantages over 
other forms of communication. These include greater 
decoupling (no channel names); reduced data flow (more 
filtering can occur at the “server”); and greater flexibility. 
The Elvin content-based messaging service provides 
these features and more. Before describing Elvin in more 
detail, we examine Jini Network technology and the 
reasons it was not used as a basis for the AIF. 

3.3 Jini 
Jini (Sun Microsystems 2001) is a Java-based network 
technology that enables the spontaneous assembly and 
interaction of services and devices on a network. Jini 
clients and servers are decoupled in that they do not 
require prior (i.e. compiled-in) knowledge of each other, 
however, after service discovery has occurred, the actual 
communication is directed.  

The AIF was based upon a content-based messaging 
service (Elvin) rather than Jini for several reasons. Jini 
was viewed as too much overhead, in that a complex set 
of interactions would have been required between the 
various processes. Jini is particularly useful for when 
objects need to be accessible in a code sense (i.e., method 
calls and manipulation), and involve many different types 
of interactions between a wide variety of devices. The 
AIF, however, is more specialised, and is not intended to 
provide interprocess code-level accessibility. The AIF is 
intended to support communication to/from/between 
basic devices and processes. Commonly, this would be 
one-way communication, for example light sensors 
continually emitting light level readings, irrespective of 
who's listening and what they listening for. Elvin’s 
quenching capabilities (discussed below) prevent this 
from being a waste of network bandwidth.  

A further disadvantage of Jini is the Java specificity. 
Whilst the AIF is currently Java-based, the underlying 
Elvin communication is platform and language 
independent and this would permit versions of the AIF to 
be developed in many languages.  

4 Elvin Content Based Messaging 
Elvin (Arnold et al. 2000) began as a publish-subscribe 
notification service, but has since evolved into a content-
based messaging service. Elvin consists of:  
• An easy to use API, allowing application developers 

to generate and consume information simply. There 
are language bindings for C/C++, Java, Python, 
Smalltalk, and Emacs Lisp, which are supported by a 
number of development tools.  

• Dynamic definition of both information formats 
(messages) and subscriptions. This is a key feature 
required to allow scalability across organisational 
boundaries. 

• Flexible and dynamic message content delivery 
defined as the application developer requires. 
Information is distributed only to the points where it is 
needed, allowing greater system throughput to be 
achieved. The importance of bandwidth efficiency 
over individual throughput is a fundamental design 
criterion of the Elvin service.  

• A simple but powerful subscription language able to 
express complex constraints on the information routed 
to applications. Elvin allows all of the information to 
be used for routing choices - everything behaves like 
an addressable subject in a more traditional 
publish/subscribe system.  

• Quenching is an unique feature of the Elvin service. It 
allows producers to receive information about what 
consumers are expecting of them so that they need 
only generate the events that are in demand. This is 
important for some classes of producers where the act 
of producing the event is expensive.  

• A decoupled security model designed to maintain the 
flexibility of publish/subscribe messaging. Traditional 
security mechanisms are point-to-point, allowing for 
authenticated communication between two parties. 
Elvin provides a flexible security mechanism where 
producers and consumers can have overlapping key 
sets that combine to allow multiple-party 
authorisation. This is used to control the delivery of 
notifications whilst maintaining the flexibility of 
loosely-coupled components. 

In its basic form, Elvin operates by having a server acting 
as a notification router between multiple connected 
clients. Clients can act as producers and/or consumers of 
events, and the server is responsible for routing 
notifications of interest to consumers. This has been 
extended to include “federations” of multiple servers but 
the concept of routing notifications based on content to 
interested clients remains the same. 

5 Ambient Interaction Framework 
The Ambient Interaction Framework builds upon the 
content-based messaging provided by Elvin to provide a 
toolkit from which the software infrastructure for 
physical ubiquitous computing environments can be 
rapidly created. This section describes the design goals of 
the AIF, provides details of the physical devices which 
have been encapsulated into the framework, and shows 
some example AIF code. 

5.1 Design Goals 
The design goals of the Ambient Interaction Framework 
were as follows: 
• rapid development - it must support the quick 

development of systems of devices; 
• device independence - it must be able to support a 

wide variety of devices;  



• portability - it must be able to be run on many 
platforms; and 

• decoupled communication - devices should not 
require knowledge of the network and/or other 
devices and services.  

It is worth reinforcing, that the goal has not been to solve 
a particular awareness or other problem, but to develop a 
toolkit which allows the rapid creation of and 
experimentation with pervasive computing environments. 
Fig. 2 shows where the AIF fits within a pervasive 
computing environment.  

Figure 2: Role of the AIF in a Pervasive Computing 
Environment 

The goal of rapid development has been met by 
incorporating the device and communication specific 
code into the AIF. This means that only a minimal 
amount of application specific code needs to be 
implemented. The goal of portability has been met by the 
use of Elvin and by implementing the AIF in Java. The 
goal of decoupled communication has been met by basing 
the AIF on the Elvin content-based messaging service. 
The goal of device independence has been satisfied by the 
use of Elvin, a common Elvin notification format, and the 
concept of encapsulations. Details of the common 
notification format and AIF encapsulations are provided 
below. 

5.2 Common Notification Format 
Elvin notifications consist of a set of attribute-value pairs, 
where the attributes are strings and the values can be of 
type string, 32-bit integer, 64-bit integer, double-
precision floating point number or opaque byte array 
(Arnold et al. 2000).  

The AIF imposes minimal restrictions on the format of 
Elvin notifications. The required notification fields are as 
follows: 
edu.dstc.ambient: 1 
type: “String describing the type of sensor” 
id: “String containing the sensor id” 

The first attribute-value pair marks this notification as 
belonging to the AIF. The type and id fields contain 
arbitrary, programmer-defined strings which describe the 
physical device (often a sensor). All other fields in the 
notification can be chosen by the programmer - it may be 
as little information as an integer sensor value, or as 

much as a detailed description of the location of the 
device, it’s capabilities, the measurement units of any 
data provided and so on. 

5.3 Ambient Interaction Framework 
Encapsulations 

Ambient Interaction Framework encapsulations have 
been performed for several physical devices. These 
include NIQ’s EZIO boards (http://www.ezio.com), 
microphones and Lego Mindstorms (http://mindstorms. 
lego.com) RCX-controlled motors. An encapsulation 
refers to writing wrapper code in order to make the device 
functionality available via Elvin notifications. The 
encapsulation of input devices (e.g. sensors) will provide 
methods by which the data-gathering capabilities of the 
device can be controlled. The encapsulation of output 
devices (e.g. actuators) will provide methods by which 
the actions can be controlled by Elvin notifications.  

Details of the encapsulated devices are provided below. 

EZIO Boards. EZIO boards provide a simple means to 
connect digital and analog inputs and outputs to various 
computing devices via an RS232 serial connection. EZIO 
boards support 10 digital (5V) inputs, 10 digital outputs, 
8 analog (0 to 5V) inputs and 2 pulse-width modulated 
(PWM) outputs.  

The Ambient Interaction Framework encapsulation of 
EZIO boards allows the programmer to easily specify the 
conditions under which notifications are to be emitted. 
For example, for analog sensors, it is possible to 
configure the AIF sensor interface to emit notifications of 
the value of the sensor under the following 
circumstances: 
• regular sampling - emit notifications of the sensor’s 

value periodically;  
• regular sampling with delta - sample the sensor 

periodically but only emit a notification if the value 
has changed by a certain amount; and 

• threshold - emit notifications if the sensor value 
passes under (or above) some defined threshold value. 

Using Elvin, it is possible to automatically quench (i.e. 
not transmit) notifications to which no consumers are 
subscribed. This can save considerably on network 
bandwidth. 

Microphone. An AIF encapsulation of audio-input 
devices has been performed. This allows for the 
notification of events based on audio-input levels. As 
with the EZIO board analog inputs, audio noise-level 
events can be generated periodically, periodically 
provided some threshold has been passed or the noise 
level has changed by a certain delta amount. 

LEGO Mindstorms. An AIF encapsulation of a LEGO 
Mindstorms RCX control “brick” and Mindstorms motors 
has been performed. The AIF interface currently supports 
the control of the RCX unit (e.g. playing sounds, 
checking the battery level, turning the unit off) and the 
control of any attached motors.  

Application 
Specific 

Interface Code 

AIF

Elvin
Server 

Hardware 
Device 

Communication 
e.g. RS-232 

Elvin Protocol 
(over TCP) 

Other Pervasive 
Computing Applications 
e.g. Location Management,
Context Managment 



5.4 AIF Class Hierarchy 
A subset of the AIF class hierarchy is shown in Fig. 3. 
These classes support interactions with EZIO boards and 
LEGO Mindstorms motors. The base classes are designed 
to be easily extensible and provide base level 
functionality such as the Elvin communication. 

5.5 Example AIF Code 
An example Java code fragment from an AIF based 
application is shown below (Fig. 4). This code assumes: 

• there is an EZIO board attached to serial port COM1; 
• there are touch and light sensors connected to A2D 

ports 8 and 4 respectively; and 
• there is a digital output device (e.g. relay control) 

connected to digital port 2. 
This code is all that is needed to setup the board, Elvin 
connection, sensor sampling rate, notification generation 
conditions and the conditions under which the digital 
output is to be switched on and off (phrased as Elvin 
subscriptions). Comments within the code explain the 
operation of the program further. 

Class Hierarchy  
     class java.lang.Object 
          class edu.dstc.ambient.AbstractSensor (implements edu.dstc.ambient.Sensor)  
               class edu.dstc.ambient.EZIOSensor (implements edu.dstc.ambient.Sensor)  
                    class edu.dstc.ambient.AnalogSensor 
                         class edu.dstc.ambient.CloseSensor 
                    class edu.dstc.ambient.DigitalSensor (implements edu.dstc.ambient.Sensor)  
          class edu.dstc.ambient.DataValue (implements java.lang.Comparable)  
               class edu.dstc.ambient.IntDataValue 
          class edu.dstc.ambient.EZIO 
          class edu.dstc.ambient.EZIOOutput (implements edu.dstc.ambient.Effector)  
               class edu.dstc.ambient.DigitalOutput 
          class edu.dstc.ambient.MotorOutput (implements edu.dstc.ambient.Effector)  
          class edu.dstc.ambient.PWMOutput (implements edu.dstc.ambient.Effector)  
 
Interface Hierarchy  
     interface edu.dstc.ambient.Effector 
     interface edu.dstc.ambient.Sensor 

Figure 3: AIF Class Hierarchy 

// We have an EZIO board attached to COM port 1, and an Elvin 
// server running on host elvin.dstc.edu.au 
EZIO ezio = new EZIO(“COM1”); 
ElvinURL elvinURL = new ElvinURL(“elvin://elvin.dstc.edu.au”); 
Producer prod = new Producer(elvinURL); 
Consumer cons = new Consumer(elvinURL); 
// Add a touch sensor on port 8 with id “#1” and sample it every 200ms 
// Add a light sensor on port 4 with id “#2” and sample it every 200ms 
AnalogSensor touch = new AnalogSensor(ezio, 8, 200, "#1", "Touch”);  
touch.setElvinConnection(prod); 
AnalogSensor light = new AnalogSensor(ezio, 4, 200, "#2", "Light”); 
light.setElvinConnection(prod); 
// Turn on automatic notification for the touch and light sensors, 
// but only send notifications if the value changes by 10 or more 
touch.setDelta(10); 
touch.setAutoNotify(true); 
light.setDelta(10); 
light.setAutoNotify(true); 
// Add a digital output on port 2 and set the conditions (Elvin 
// subscription) under which it will be turned on and off. The output 
// will be turned on if touch sensor is pressed (value > 128) and will 
// be turned off if the touch sensor is released OR an “Off” message 
// is received via Tickertape. 
DigitalOutput dout = new DigitalOutput(ezio,2,cons); 
dout.setOnNotification("edu.dstc.ambient == 1 &&  
  type == \"Touch\" && value > 128"); 
dout.setOffNotification("(edu.dstc.ambient == 1 &&  
  type == \"Touch\" && value <=128) ||  
  (require(TICKERTAPE) && TICKERTEXT == \”Off\”)"); 

Figure 4: Example Application Using AIF 



6 Proof-of-Concept Implementation 
To test the appropriateness of the AIF design, several 
proof-of-concept implementations have occurred. One of 
these, an Ambient Café, is described below.  

6.1 Ambient Café  
An early prototype version of the AIF was used in the 
construction of an Ambient Café - a student project 
within the Bachelor of Information Environments degree 
(Docherty et al. 2001) at The University of Queensland. 
The goal of the Ambient Café project was to create a 
technologically enabled café environment (entrance, 
dining area, entertainment area and back office) in which 
the computers were hidden from the users. The users 
(customers and staff) were to interact with the “system” 
in an ambient manner without knowing that they were 
using computers, and indeed, without knowing that there 
was a “system”. 

The resulting environment featured many “invisible” 
computers, supporting various sensors, actuators and 
display devices, such as bend, pressure, touch, and light 
sensors, microphones, lights, projection displays, 
speakers, and tickertape displays. Sensors and some 
actuators were connected to interface boards (often the 
EZIO board) which were connected to standard PCs4. The 
software for each sensor was implemented using the 
Ambient Interaction Framework. This allowed quick 
development of the software for the Café. Additional 
software components were able to use standard Elvin 
interfaces to receive notification of events of interest. 
These software components could then carry out other 
actions, such as changing the information on particular 
displays. 

Some of the behaviours exhibited in the environment 
included: 
• a back office display of occupied seats and tables 

based on pressure sensors on chairs; 
• overhead lighting that led customers to their table as 

they walked into the café (see Fig. 5.); 
• a front-window display of how busy the café was 

based on occupancy and ambient noise level; and 
• an interactive graffiti wall that warped images based 

on activities that occurred within the café (e.g. flowers 
being moved within a vase). This formed part of the 
“entertainment” aspect of the café. The graffiti wall 
images were also available over the Internet. 

The underlying infrastructure was the prototype version 
of the Ambient Interaction Framework based on Elvin. 
The decoupled nature of content-based communication 
enabled the individual components of the Café to be 
developed independently by small groups and to work 
seamlessly when brought together. This is the key 
advantage of the AIF and the use of Elvin. Much of the 
communication and hardware interface functionality is 
provided by the AIF - the developer worked only on the 
application specific behaviour aspects of the system.  

                                                            
4 Standard PCs were used for cost reasons. A network-enabled 
embedded computer could easily have been used instead. 

 

7 Conclusions 
The Ambience project of the DSTC and The University 
of Queensland aims to develop and implement ambient 
computing via a three pronged approach: observation and 
analysis of user behaviour, development of a theoretical 
framework, and, the design and development of an 
Ambient testbed in which experimental pervasive 
computing environments can be developed. Towards this 
latter goal, we have developed the Ambient Interaction 
Framework (AIF).  

The AIF is based on the Elvin content-based messaging 
service. Elvin offers features crucial to the AIF including: 
decoupled communication, meaning senders and receivers 
and be developed independently, and; quenching - a 
reduction in bandwidth requirements by not transmitting 
messages to which no-one is listening. As the number of 
devices in pervasive computing environments grow these 
features will become more important.  

The Ambient Interaction Framework eases the task of 
constructing new pervasive computing environments by 
encapsulating the data input and output capabilities of 
physical devices and automating the production and 
receipt of Elvin notifications. The encapsulated devices 
can then be integrated into new environments by writing 
a minimal amount of application-specific Java code.  

The development of several ambient environments has 
proved the usefulness of the AIF. Future work will see 
the extension of the AIF to other physical devices and the 
development of other experimental environments (in 
progress at the time of writing) in order to further test the 
approach and extend the AIF.  

8 Acknowledgements 
The work reported in this paper has been funded in part 
by the Cooperative Research Centre Program through the 
Department of Industry, Science and Resources of the 
Commonwealth Government of Australia. 

Figure 5: Scenes from the Ambient Café. Left: the 
underside of one of the café tables. Right: Entrance to 
the Ambience Café demonstrator. The overhead lights 
are controlled by events generated by pressure mats 
under the carpet. 



9 References
AGUILERA, M., STROM, R., STURMAN, D., 
ASTLEY, M., and CHANDRA, T. (1999): Matching 
Events in a Content-based Subscription System. 
Principles of Distributed Computing. 

ALLPORT, D., RENNISON, E., and STRAUSFELD, L. 
(1995): Issues of gestural navigation in abstract 
information spaces. Proceedings of CHI ’95, 206-207, 
ACM. 

ARNOLD, D., BOOT, J., HENDERSON, M., PHELPS, 
T., and SEGALL, B. (2000): Elvin - Content-Addressed 
Messaging Client Protocol, Proposed Internet Draft. 
http://elvin.dstc.edu.au/download/internet-draft.txt. 

CARZANIGA A., ROSENBLUM, D., and WOLF, A. 
(2001): Design and Evaluation of a Wide-Area Event 
Notification Service. ACM Transactions on Computer 
Systems 19(3): 332-383, ACM. 

DOCHERTY, M., SUTTON, P., BRERETON, M., and 
KAPLAN, S. (2001): An Innovative Design and Studio-
based CS Degree. Proceedings of 32nd SIGCSE. ACM 
Press. 

GREENBERG, S. and FITCHETT, C. (2001): Phidgets: 
easy development of physical interfaces through physical 
widgets. Proceedings of the 14th annual ACM Symposium 
on User Interface Software and Technology, 209-218.  

ISHII, I., WISNESKI, C., BRAVE, S., DAHLEY, A., 
GORBET, M., ULLMER, P., and YARIN, P. (1998): 
Ambient Room: Integrating Ambient Media with 
Architectural Space. Proceedings of CHI '98, ACM. 

KANTOR, M., REDMILES, D. (2001): Creating an 
Infrastructure for Ubiquitous Awareness. Proceedings of 
Interact’01, 431-438, IOS Press. 

RITTEL, H., and WEBBER, M. (1973): Dilemmas in a 
General Theory of Planning. Policy Studies 4(1): 155-
169. 

SEGALL, B., ARNOLD, D., BOOT, J., HENDERSON, 
M., and PHELPS, T. (2000): Content Based Routing with 
Elvin4. Proceedings AAUG2K, Canberra, Australia. 

STREITZ, N. (1999) 
http://www.darmstadt.gmd.de/ambiente/. 

SUN MICROSYSTEMS (2001): JINI Network 
Technology Datasheet. From http://www.sun.com/jini. 

WEISER, M. (1993): Hot Topics: Ubiquitous Computing. 
IEEE Computer, October. See also 
http://www.ubiq.com/hypertext/weiser/UbiHome.html 

WEXELBLAT, A. (1995): An approach to natural 
gesture in virtual environments. ACM Transactions on 
Computer-Human Interaction 2(3): 179-200. 

 


